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The renormalization of the spin-wave frequencies in a ferromagnet, due to the thermal population of other 
spin waves, has been calculated taking explicit account of the effects of the dipolar coupling between the 
spins. The results obtained by using the Green function decoupling approximation of Tyablikov differ 
markedly from those obtained using the symmetric decoupling recently suggested by Callen. For purposes 
of comparison, the renormalization of the mode of uniform precession specifically is examined in the low-
temperature limit, where it is found that the renormalization obtained using the Callen decoupling is identical 
to that obtained from spin-wave theory. Experiments which measure the spin-wave renormalization are 
discussed with regard to the theory. 

I. INTRODUCTION 

TH E statistical mechanics of a Heisenberg ferro-
magnet have been analyzed by the method of 

double-time temperature-dependent Green functions by 
several authors.1-7 Such treatments provide, as inci
dental results, the renormalization. of spin-wave energies 
—that is, the shift in energy of a spin wave caused by 
the occupation of other spin-wave modes. In these 
calculations, the dipolar coupling between the spins is 
not included. Note added in proof. The author's atten
tion has been called to the work of Meng Hsien-chen, 
Fiz. Tver. Tela 4, 705 [translation: Soviet Phys.—Solid 
State 4, 514 (1962)] who has extended the Tyablikov 
theory for spin | by including the effect of the dipolar 
interaction. Since the Callen (Ref. 5) method of extend
ing Green-function theory to higher spin is equally 
applicable when the dipolar interaction is included in 
the Hamiltonian, our results are valid for general spin 
for both Tyablikov and Callen decoupling. The Hamil
tonian consists only of the Zeeman energy of the spins 
in the external magnetic field and the isotropic Heisen
berg exchange interaction. 

For long-wavelength spin waves, the magnitude of the 
dipolar interaction is of the order of, or exceeds, that of 
the exchange interaction (the contribution of the ex
change interaction to the spin-wave energy, of course, 
vanishes as the wavelength approaches infinity). Thus, 
the dipolar interaction is an important factor in de
termining the energy and the renormalization of the 
energy of long-wavelength spin waves. I t is of interest 
to find the effect of the dipolar interaction on the 
renormalization of these long-wavelength excitations 
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since the experiments of LeCraw and Walker,8 Weber 
and Tannenwald,9 and Matcovich, Belson, Goldberg, 
and Haas10 are concerned specifically with the measure
ment of the renormalization of just such excitations; in 
addition, the characteristics of these long-wavelength 
excitations are the subject of several other experiments 
(e.g., ferromagnetic resonance, parallel-pumping, Suhl 
instabilities). 

In an attempt to include the dipolar interactions, 
Tyablikov11 has introduced the classical demagnetiza
tion tensor into the Hamiltonian, thereby taking ac
count of the demagnetizing effects of the surface of the 
finite sample. However, the local demagnetizing fields 
have not been included. These local demagnetizing fields 
play an important role since they are responsible for the 
removal of the spin-wave degeneracy, thus, producing 
the familiar spin-wave band. 

We have used the full dipolar Hamiltonian to calcu
late the renormalization of the spin-wave energies. We 
find that the results we obtain by using the Tyablikov 
method2 of decoupling (or the random-phase approxi
mation) differ markedly from those we obtain using the 
symmetric decoupling recently suggested by Callen.5 

The results for the renormalization of the mode of 
uniform precession are examined in the low-temperature 
limit and compared with the results of spin-wave theory. 
The results obtained from the Callen decoupling5 are 
identical to the spin-wave results, but extend these re
sults through the entire temperature range. The LeCraw-
Walker experiment8 is discussed in terms of our results 
and we find that these measurements lead to a determi
nation of a renormalization factor which is very nearly 
the "universal" (i.e., independent of wave vector) 
renormalization factor of the simple (dipolar interaction 
not included) spin waves. 

Finally, we note that for short-wavelength spin waves 
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the strength of the exchange interaction is of the order 
of 1000 times that of the dipolar interaction. Thus, the 
dipolar interaction makes a negligible contribution to 
the energy of short-wavelength spin waves. Since the 
number of shorter wavelength spin waves far exceeds 
the number of long-wavelength spin waves, the shorter 
wavelength excitations dominate the temperature de
pendence of the magnetization at all but very low tem
peratures ; in addition, they determine the Curie temper
ature. Therefore, the previous calculations, which were 
concerned mainly with these thermodynamic quantities, 
were quite justified in ignoring the dipolar interaction. 
However, we emphasize that the dipolar interaction 
does make an important contribution to the renormali-
zation of the long-wavelength spin waves and, hence, to 
experiments which probe the particular characteristics 
of these modes rather than sensing thermodynamic 
averages over all modes. 

II. THE GREEN FUNCTION EQUATION 

We consider the Hamiltonian 

+ E Z ? / B [ S „ . S / - 3 ( a / e . S / ) ( « / e . S e ) ] > (1) 
f , g 

where JJLS is the magnetic moment per ion; Ho is the 
applied magnetic field which we assume to be in the 
negative z direction; Sg is the spin operator for the ion 
on site g; J(g—f) is the exchange integral between ions 

where 
8 (a) = <[S+6<^ <>-]>. (6) 

Since Eq. (5) for GE
a+~{gf) involves higher order 

Green functions, it is necessary to choose a decoupling 
approximation. Tyablikov2 has chosen a method of 
decoupling which ignores fluctuations in Sg

e; he there
fore replaces Sg

z by its average value, and 

««VS/+; » ^ - > < 5 / > « 5 , + ; » * . (7) 

Callen5 has recently suggested a symmetric method of 
decoupling which does take account of fluctuations in 
Sg

z. He proposes then that 

« 5 / 5 , + ; ))B-+(SMSf+i » * 

-*(sgsf+)((s+; ))E 
-a(s+sf+)((sg-; »*. (8) 

at sites g and / ; Dfg=/jL2/2\rgf\
z for a classical electro

magnetic dipolar interaction; rfg is the distance between 
the sites / and g; afg is the unit vector from site / to 
site g. In order to simplify the calculation, we consider a 
sample which is an ellipsoid of revolution, coaxial with 
the applied magnetic field (in the z direction). In addi
tion, we assume the crystal structure to be simple, body-
centered, or face-centered cubic, with one of the cubic 
axes oriented along the z direction. 

The formalism we present follows closely that of 
Callen.5 Consequently, we consider the Green function 

Gt^(gA^((S+(t);e*s*Sr)), (2) 

where S±=Sx±iSv. 
The Fourier transform (with respect to the time) of 

the Green function Gt
a+~(g,l) is denoted by 

GB<+-(g,r) = ((S+;e*S''Si-))B, (3) 

where E=ftco. The equation of motion for GEa+~~(g,l) is 
then 

1 
EGB^(g,l) = --(tS+,e*st-Srl) 

+ « [ 5 f l + 3 C ] ; ^ 5 ' ' 5 r ) ) B , (4) 

where the square brackets denote a commutator and the 
single angular brackets denote an average with respect 
to the canonical density matrix at temperature T. 

The substitution into Eq. (4) of the expression ob
tained for the commutator of S0

+ with the Hamiltonian 
yields12 

Note that while the third term on the right side of (8) 
vanishes5 in the absence of the dipolar interaction, this 
is not the case when the dipolar interaction is included. 

On the basis of physical requirements arising from the 
behavior of (Sz), Callen chooses the decoupling parame
ter a as 

1 (Sz) 
a = — ^ . (9) 

2S S 

With the inclusion of the dipolar interaction, the 
maximum value of (Sz) deviates13 slightly from 5 . [See 

12 The additional sums 

2 2J Dfg{2afg+afgzSgzSfz—afg+af0
zS0

+Sf~—afg~afg
zS0

+Sf+} 

which should appear on the right side of Eq. (5) have been omitted 
since they vanish under the symmetry assumptions we have made 
above. 

13 T. Holstein and H. PrimakofT, Phys. Rev. 58, 1098 (1940). 

1 
J&H^(g,l) = —®(a)8gtl+,in<GB<+-(g,l)-2 L J(g-f)(((Sp'Sf+-Sf*S+); e*s>MSr))* 

2ir f 

+2 E DfBZ(l-fcf+af0-)((S0'Sf+; e^Sf-))*- (l-3a'fMS+Sf-, e^Sr))K 
f 

-§oLf0-*({SsSr\e*8*Sr))E~], (5) 
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Sec. I l l , Eq. (41)]. I t is, therefore, plausible in this the quantity a explicitly throughout the calculation. 
case to chooser as The substitution of a = 0 will then give the result as 

1 (Sz) obtained by Tyablikov decoupling while the substitu-
a== # (10) tion of a as given by Eq. (10) will give the Callen 

2(o7max yS7maX decoupling results. 
We shall decouple the Green function equations ac- Insertion of the decoupling approximation [Eq. (8)] 

cording to the approximation given in Eq. (8) and carry into Eq. (5) yields 

0 (a ) 
EGB**-(g,t) = d9j+ytiH0G^~(g,l)-2(S*)j: J(g-f)Z((Sf+; e*s*MSr))s-((S+', e * * ' £ r » J 

2T / 

+ 2 a E J(s~f)L(Sa-Sf
+)((S9

+; e*s>'Si-))B-(SrS+)((Sf+; e^Si-))E] 
f 

+2a E JQs-msssms,-; e'*>'Sr))B-(s,+s,+X(Sr; «•*'*.?»-»*] 

/ 
X((S+; e^Sr))E-§af+*({Sr;e^Sr))E~] 

-2a E Dfl{l-iaf+afg-)(SgSf+)({S+; e"^Sf-))B-{i-3(afg^) 

x(s+Sr){(Sf+; e^SrVz-las+Ks+SrXiSa-, ««fl«'5r» J 
-2aEDfl(l~laf+a/r)(S+Sf+){(Sg-, e « * ' S r » * - ( l - 3 ( a / / ) ! ) 

X(S9+Sf+X(Sr; e"Sl*Sr))S-hfg
+2(SgSr)((S0+; e's''Sr))*l. ( ID 

Since there is translational invariance we consider the Fourier transforms 

G**- (k ) = E e-ik-<^GEa+~(g,l), (12) 
g-i 

JW-Zer'M-Vijr-l), (13) 
g-i 

*-+(k,o) = E *-«^»•He'ai,SfSl+), (14) 
g-i 

where (g—l)-k denotes the vector product r 9 r k . 
From (11), (12), (13), and (14), we find 

| 2a 
E-yhH*-2(S')[J(P)-J(k)l E [ / ( k ' ) - / ( k ' - k ) > - + ( k ' , 0 ) 

I N k' 

2a 
- 2 < 5 ' ) E Dfa(l-Zafg+afg-)e^-V-*-2Z D , ( , ( l - 3 ( a / / ) 0 + - E E ^ / 9 C ( l - | a / „ + a / r ) e « 8 - « ^ V ~ + ( k ' , 0 ) 

/ / iV k' / . 

- ( l - 3 ( a / / ) a ) e « » - c - ( k ' - k ) ^ - ( k ' , 0 ) - f a / l , - w e « f - o - k ' ^ - ( k ' , 0 ) ] Ga»*-(k) 

(2a 
- - E [ / ( k ' ) - / ( t ' - t ) > + + ( k ' , 0 ) - 3 ( 5 f f i Z ^ / V * - * ' - * 

IN *' / 

2a 
E E Z ? / 9 [ ( l - f a / a + a / a - ) e i ( « - f ) - k V + + ( k ' J 0 ) - ( l - 3 ( a / / ) 2 ) ^ ^ « - ( k ' - k ¥ + + ( k ' , 0 ) 

TV k' / 

-fa,o
+V^-*'r+(k',0)]W-(k) = — , (15) 

J 2TT 
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where 
^±±(k,a) = £ *- '*-» -k<B«*'*5,±S,±>, (16) 

g-i 

GE
a~(k)=Ze-^-l)-kGE

a--(g,l), (17) 
g-1 

G**-fe,0=«5r(0; e*a*'Sr))B. (18) 
By beginning with the equation of motion for the Green function GE0,—(g,l) and proceeding in the manner 

outlined above we obtain the following equation which, like Eq. (15), relates GE0, (k) and G# a +~(k). 

( 2a 
\E+yfiH0+2(S%J(O)~J(k)2+- E [ / ( k O - / ( k ' - k ) ] ^ + ( k ' , 0 ) 
I N k' 

2a 
+ 2 ( ^ ) [ E ^ ( l - f a / / a / f f - ) ^ ( f - g ) - k - E Dfo(l-3(afoy) E E Df£(l-frfg+afr)eiW'*f-+QL'fl) 

f f N k' / 

- ( l - 3 ( o : / / ) 0 ^ ( g - f ) - ( k / - k V " + ( k ,
7 0 ) - f a / , - 2 ^ ( g - f ) - k V + + ( k ,

7 0 ) ] G*—a(k) 

(2a 

+ - E C/(kO-/(k,-k)>-(k,,o)-3(^)E z ^ ^ - v ^ - * 
liV k' / 
2a 

E E / ^ [ ( l - f a z / a / r y ^ ^ 
N k' / 

- f a / ,~
2 ^ ( g - f ) - k V~ + (k , , 0 ) ] ^ a + - ( k ) = 0. (19) 

In order to obtain explicit results we consider two 
particular cases: first, that of k^O spin waves and 
secondly, that of the mode of uniform precession 
(k = 0 mode). 

III. RESULTS FOR k^O SPIN WAVES 

The dipolar sums which appear in (15) and (19) are 
readily evaluated if it is assumed that the sums are 
independent of the position rg of the gth ion. This is a 
valid assumption for ions such that the distance to the 
sample surface is large compared to the excitation 
wavelength. For wavelengths small compared to the 
sample dimensions, this condition is satisfied for the 
large majority of the ions. Then for the case of the 
classical electromagnetic dipolar interaction 

f 

= (7*)W(4ir/3) ( 1 - f sin20k), (20) 

EDfg(l-^af^aff-)e^^ 
f 

= - (7ft)W(2ir/3) ( 1 - f sin20k), (21) 

3£Z>,,(a /a±)V*-<*-*> 

- - (yfi)'2N2ir sin20k e
±2i^, (22) 

where N is the number of spins per unit volume, 0k is the 
polar angle of the kth spin wave with respect to the z 
direction, and $k is the azimuthal angle of the kth spin 
wave. 

The dipolar sums for ^ = 0 can be directly related to 

the demagnetization factors, so that 

E Dfo(l-3afg«) = - (yh)*2irN(i-N,), (23) 
/ 

/ l Nx+Ny\ 
E Df0(l-%af+af0-)= ~ (ym*N[ , (24) 
/ \ 3 2 / 

3 E Dfg(afg±)*= - (yfiy2wN(Nx~Ny). (25) 
/ 

Since we are considering the case of an ellipsoid of 
revolution, Nx=Ny=Nt and the sum in (25) is zero. 

The above expressions for the dipolar sums can be 
substituted into Eqs. (15) and (19) and the solutions 
obtained. However, it is convenient before formally 
obtaining the solutions to recognize the <£k dependence 
of ^-+(k,0), ^++(k,0), and \p— (k,0). As will be corrobo
rated later [see Eqs. (31) and (32)2, t^~+(k,0) is inde
pendent of 0 k while ^+ +(k,0) and \p (k,0) vary as 
e+2^k and e~2^k? respectively. This <£k dependence is to 
be expected since \^~+(k,0) measures the average of the 
correlation of the transverse magnetization while 
^+ +(k,0) and ^ (k,0) measure the ellipticity of the 
correlation of the transverse magnetization. Some of the 
summations over k' which occur in (15) and (19) contain 
factors of e±2i4>*\ These summations vanish because of 
the assumed symmetry. Thus, (15) and (19) can be 
rewritten in the form 

0 ( a ) 
(E-Ak)GE

a+-(k)-~Bke^tGE
a— (k) = , (23) 

2w 

(E+A k)GBa— (k)H-J5ke-«*kGB
a+-(k) = 0, (24) 
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2a 
.4k = 7 ^ o + 2 ( ^ ) [ / ( O W ( k ) ] + - E [^ 

N k' 

-laiyfif L (T siri2dk>+2T sm2dk>„k-2T)iP~-+(k',Q)--a(yfi)2 E 2TT s i n ^ k ^ ^ k ^ — ( k ' , 0 ) , (25) 

Bk=(yfi)2N(S*)2irsm20k. (26) 

Solving (23) and (24) for G#a+~(k) and G V (k) materials with Curie temperatures of the order of 
yields 

@(a)\Ek+Ak Ek~Ak) 

" " " ~ E+Ek I 
1 

4rEk[E-Ek 

0(a ) 
G**—(k) = J 3 k ^ ^ k 

47rEk 

1 

E-Ek E+Ek 

where 
Ek={Ak*-BJ) 1/2 

(27) 

(28) 

(29) 

The quantities ^- + (k ,a) and ^ (k,a) [Note that 
^+ + (k ,a) = ^ (k,a)*] can be obtained from the ex
pression 

r« G W e « ( k ) - - G V - ^ ( k ) . 
^(k,a) = linr/ 

Thus, 

i T + ( k , a ) = 0 ( a ) 

and 

1 W k 

+- — 
£ ^ ^ - 1 2 \ £ k 

•A 

du>. (30) 

(31) 

r - ( k , a ) - — 
©(a)£ke-2^k| 

£ k 

1 

^Ek/kT_l 

Finally, Callen5 has shown that 

( 5 - $ ) ( l + # ) 2 S + 1 + ( S + l + S O ^ 2 ^ 1 

(S') = 

where in our case 

1 \Ak 

*=-£ -
N k I £ k 

(1+*)2 - $ 2 « + l 

\ e « k / * r _ l / 2 \ £ k / 

From (6), we see that 

@(0) = 2(52). 

(32) 

(33) 

(34) 

(35) 

hundreds of degrees Kelvin, such excitations are a very 
small fraction of the total number. Then from (33), at 
very low temperatures, 

< $ ' > = £ - * , (36) 

where to lowest order in temperature the quantities A k 

and Ek appearing in <£ are those for 0°K. 
Therefore, 

.4k=7*^o+2<5-> m ax[ / (0 ) - / (k ) ] 
+yfiMo(27r s in20k-4TTAQ , (37) 

Bk^yfiMo27r sin20k, 

and 

Ek = y^H,~4TMoNz+2(S%laxlJ(0)~J(k)^}^ 

X { F o - 4 x M o ^ , + 2 ( 5 % a x [ / ( 0 ) - / ( k ) ] 

+47ri^osin^k}1^, (39) 
where 

MQ=yM(S*)m&x. (40) 
Thus, 

1 (Ak 

(s>)=s £ 1 
2N k\Ek 

\—EIY y (41) 
/ N k Ek\e

E*kT-V 

Equation (41) with the values of ^4k and Ek given by 
(37) and (39) is identical to the result of Holstein and 
PrimakofL13 As discussed above, the quantity (1/27V) 
X]Ck04k/£k— 1) is quite small so that the deviation of 

max from S is usually negligible.13 

IV. RESULTS FOR THE MODE OF 
UNIFORM PRECESSION 

The dipolar sums (23)-(25) appropriate for the uni
form precession mode can be substituted into the Green 

Thus, Eq. (29) for the energy, Eqs. (31) and (32) for f u n c t i o n equations (15) and (19) and the Green func-
the correlation functions, and Eq. (33) relating (S*) and t i o n s o b t a i n e d T h e s o i u t i o n s t a k e a particularly simple 
$ must be solved self-consistently for <S-> in order to f o m f o r a n e l l i p s o i d o f revolution since GE«— (0) = 0 
obtain the temperature dependence of the various a n ( j 
pertinent quantities (e.g., Ek and (Sz)) for each of the @(a) 1 
two decoupling schemes. Gjs?tt+"(0) = , (42) 

At very low temperatures, <£ is very small. The tern- 2 T E—EG 

perature-dependent term is small because of the charac- where 
ter of the Bose factor at low temperatures. The E^yh[_H^+yfiN{Sz)^(Nt-Nz) 
temperature-independent term is always small since the 
factor (Ak/Ek— 1) rapidly • approaches zero with in- +ayfiAn S ( l — f sin20k)^-+(k,O) 
creasing h; only excitations with energies less than that k 

corresponding to a temperature of a few degrees Kelvin —ayfi2ir £ sin20k e
2i4>^"~~(k,0)]. (43) 

make any appreciable contributions to the sum and, for k 
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Equation (43) is, therefore, an expression for the 
renormalized temperature-dependent energy (or fre
quency) of the k = 0 mode where (Sz), ^~+(k,0), and 
\p (k,0) are obtained from the self-consistent solution 
discussed in the previous section. 

We consider the low-temperature behavior of Eo in 
order to compare the results of the two decoupling 
methods with those obtained from a spin-wave calcula
tion. As can be seen from. Eq. (41), at very low tem-

The first term on the right side of (48) results in a shift in 
the energy from the familiar yfi[H^+^TrM^{Nz—Nt)~] 
even at 0°K. The shift apparently arises from the local 
demagnetizing fields induced by the zero-point oscilla
tion. However, as discussed in the previous section, the 
term is very small and is usually negligible; only for a 
material with a Curie point of a few degrees Kelvin 
would this term be measurable. The second term on the 
right-hand side of (48) contains the Tyablikov result 
plus additional terms. 

The spin-wave derivation of the shift of the mode of 
uniform precession due to the presence of other spin 
waves has received considerable attention.14"-17 The spin-
wave result is obtained by retaining terms in the 
Hamiltonian fourth order in the spin-wave variables. 
The second-order terms in the Hamiltonian are di-
agonalized by the usual Holstein-Primakoff transforma
tion;13 these transformed coordinates are then substi
tuted into the fourth-order terms and the expectation 

14 E. Schlomann, Tech. Rept. R-48, Research Division, Ray
theon Company, Waltham, Massachusetts, 1959. 

18 E. Schlomann, Phys. Rev. 116, 828 (1959). 
16 T. Oguchi and A. Honma, J. Phys. Soc. Japan 16, 79 (1961). 
17 C. W. Haas, Doctoral dissertation, Graduate School of the 

University of Pennsylvania, 1962 (unpublished). 

peratures, 

yfiN(Sz)=-~MQ~y1t £ — rjk, (44) 

where 
1 

The substitution of (31), (32), and (44) into (43) yields 

value of these terms calculated in order to find the shift 
in the k=0 energy. The results are found to be identical 
to those of Eq. (48) including the very small tempera
ture-independent shift. This agreement further cor
roborates5 the validity of the Callen decoupling in 
treating magnetic systems. 

V. THE LECRAW-WALKER EXPERIMENT 

We now consider the results of the LeCraw and 
Walker8 parallel-pumping experiment in terms of our 
results, the conclusions being equally applicable to the 
Weber and Tannenwald thin-film spin-resonance ex
periment.9 

For reasons which will become evident we consider 
the diagram of Fig. 1. Here we have shown the 6k = ^Tr 
magnon branch at two temperatures 7 \ and T^ We 
focus our attention on a particular \-w magnon with 
vector k. The difference in the resonance frequencies at 
the two temperatures, oo^—Uk2, is a direct measure of 
the renormalization of this magnon. If we are interested 
in the change in the curvature of the spectrum rather 
than in the actual renormalization of a single mode, we 
measure the variation in the difference co&—co^o as a 
function of temperature. The monitoring of the fre-

Eo=T^[^o+47rMo(A^~/V 2)]+ae(0)(7^) 227ri : I 0 ~ f sin20k)( — 1 ) + s i n 2 0 k - ^ 
k L \ £ k / 2£k . t'1-1*1^1)-

+ (7&)24xE \(N.-N,)-^+aB(0)(l-| s in20k)—+a©(0) sin20k 
£k 2£k. 

m, (46) 

where Ak, Bk, and -Ek have their 0°K values as given in (37), (38), and (39). 
We now consider the cases of Tyablikov and Callen decoupling. In both cases we will consider the shift AE of E0 

from YJ&I7?o+4jrAf o(iV(—2V*)]. For Tyablikov decoupling, a=Q and 

A£Tyabiikov= (7^)24x(A^-iV ()E —i7k. 
k £ k 

For Callen decoupling, at very low temperatures, a © ( 0 ) = 1 and 

(47) 

A£callen= ( T * ) * 2 T £ 
k 

/Ak \ Bk-
(1—1 sin20k) 1 +sin20k 

\Ek I 2Ek . 

k 

/Ik Bk 

(Nz-Nt+l-l sin20k)—+sin20k 

Ek 2EkJ 
k - (48) 
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FIG. 1. Illustrative 
plot showing the J T 
magnon branch at 
two temperatures T\ 
and r 2 and the re-
normalization of a 
particular k magnon. 

WAVE VECTOR 

quency of a particular k magnon as a function of 
temperature has not as yet been achieved in practice. 
Thus, the renormalization of a particular k magnon 
has not been measured; however, the experiment of 
LeCraw and Walker does provide a method for meas
uring the change in the curvature of the magnon 
spectrum, or the "curvature renormalization." 

LeCraw and Walker have observed the onset of 
instability in a parallel pumping experiment.14,18,19 Be
fore discussing their results with respect to renormaliza
tion theory, we briefly recall that the parallel-pump 
method consists of applying a microwave field parallel 
to the dc magnetic field. A coupling occurs between this 
longitudinal microwave field and the spin waves because 
the spin waves precess on elliptical rather than on 
circular cones, and hence, create components of the 
longitudinal magnetization which vary with twice the 
spin-wave frequency. In particular, the spin waves 
which propagate perpendicular to the dc field (0* = -|x) 
are most elliptical in their precession (because of the 
local demagnetization fields); hence ^w spin waves of 
half the pump, frequency are most strongly coupled to 
the microwavejfield. The threshold for instability occurs 
when the rate at which energy is fed into these spin 
waves equals the rate at which energy is lost by these 
spin waves. When the microwave field exceeds the 
critical value, pairs of spin waves of equal and opposite 
wave vectors, and with frequencies equal to one-half the 
pump frequency, are excited. Since the critical field is 
dependent upon the rate at which energy is lost by the 
spin waves, the critical field shows a sharp maximum at 
that frequency which corresponds to the crossing of the 
| x magnon branch and the phonon spectrum.14,20 This 
magnon-phonon crossing frequency shifts with re
normalization of the magnon spectrum and conse
quently the parallel pumping instability experiment 
affords a measurement of the curvature renormalization. 

More specifically, consider the diagram of Fig. 2. 

18 E. Schlomann, J. J. Green, and U. Milano, J. Appl. Phys. 31, 
386S (1960). 

19 F. R. Morgenthaler, J. Appl. Phys. 31, 95S (1960). 
20 E. H. Turner, Phys. Rev. Letters 5, 100 (1960). 

Here we have shown the Jx magnon branch at tempera
tures Ti and T2 as well as a phonon branch which we 
assume to be temperature-independent (if the phonon 
velocity is temperature dependent this effect must be 
included). The sharp peak in the critical field occurs at 
a frequency coi for temperature 7 \ and at a frequency co2 

for temperature T2. The frequency difference Jcoi—|co2 

is not simply the magnon renormalization since the two 
frequencies correspond to magnons of different wave 
vector. However, since the phonon frequency, velocity, 
and dispersion relation are known, the wave vectors k± 
and k2 can be calculated, and, in principle, the frequency 
difference can be related to the renormalization of the 
two magnons as given through Eq. (29); the relationship 
is not simple. 

Actually, LeCraw and Walker have done the experi
ment by holding the pump frequency fixed and varying 
the dc field. This method provides a direct measure of 
the temperature variation of the curvature of the JTT 
branch. The different dc fields result in \-K spin waves of 
different k being excited. As discussed above, there is a 
sharp increase in the critical field when the dc field is 
adjusted so that the unstable spin waves are degenerate 
with phonons of the same co and k. The peak in the 
critical field and the corresponding dc field are observed 
as a function of temperature. Since the phonon dis
persion relation is u=vk, the unstable \ir spin waves 
which are degenerate with the phonons always have a 
frequency of half the pump frequency wp and a corre
sponding k = o)p/2v. As the temperature is changed, the 
dc field is adjusted so that this same spin wave of wave 
vector k has a resonance frequency of %a)p; therefore, it 
is the dc field required to maintain a constant resonance 
frequency of a spin wave of known k which is being 
observed. In addition, the critical field as a function of 
dc field exhibits a discontinuity14,18 at £ = 0; thus Hk-*o, 
the dc field for resonance of a \-K spin wave with wave 
vector k—»0 and with resonance frequency wp/2, is 

ABSORPTION PEAK 

AT TEMPERATURE T« ' 

ABSORPTION PEAK 

AT TEMPERATURE \ 

ir/2 MAGNON BRANCH 

AT TEMPERATURE T< 

TT /2 MAGNON BRANCH 

AT TEMPERATURE T 2 

MAGNITUDE OF 

CRITICAL FIELD 

FIG. 2. Plot showing the crossing of the phonon spectrum with 
the Jn- magnon branch at temperatures Ti and 2Y Also indicated 
are the frequencies at which the peaks in the critical field occur. 
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easily determined. LeCraw and Walker have measured 
the difference in the fields for resonance Hk-+o—Hk &s a 
function of temperature. 

From Eqs. (25) and (26), we see that the values of A k 

and Bk for two 6k = ^ir modes with wave vectors k and 
k —» 0 are related as 
Ak==Ak^~yfiHk^+yfiHk+2(S%J(0)~J(k)~] 

(Sz) 
+ — E [/(kO-/(k'-k)]r+(k',0) (49) 

NS2 k' 
and 

Bk^Bk^> (50) 

where we have introduced the Callen value for a and 
neglected the very slight difference between (Sz)m^-
and 5 . 

Since the experiment was done in such a way that the 
frequencies of the two modes are identical (i.e., half the 
pump frequency) we find from (29), (49), and (50) that 

2(SZ) (Sz) 
H^-Hk = [ / ( 0 ) - . / ( k ) ] + 

yfi. yhNS2 

XZ [/(k')-/(k'-k)>-+(k',0). (51) 
k' 

Substituting Eq. (31) for ^-+(k',0) yields 

2<5«>[ 
H^ - f f*=- [ / (0)- /(k)] 

yfi 

+—E[/(k ')-7(k '-k)>k . 
S2N k' 

<5»> 
+ — E [ i ( k ' ) - / ( k ' - k ) ] 

S*N k-

X 
V£k. / 

(„k.+*) . (52) 

The third term on the right side of (52) is usually 
negligible compared to the first two terms. Thus, the 
difference in the fields for resonance is 

2<S*>f 
HM-Hk= [/(0)-/(k)] 

yfi I 

(Sz) I 

+ E [/(k'WCk'-k)]^ . (53) 
S2N k' I 

The right side of (53) is identical in form to the 
renormalization of the simple spin waves, (i.e., spin 
waves in the absence of the dipolar interaction) found 
by Callen.5 However, the Ek and (Sz) which appear in 
(53) are those obtained by including the effects of the 
dipolar interaction. Actually, there is little difference in 
evaluation of the expression in (53) for the two types of 
spin waves over most of the temperature range and the 
measurement of the difference in fields for resonance is 
very nearly a measure of the renormalization of the 
simple spin waves. 

In addition, for simple lattices with only nearest 
neighbor exchange interactions, it has been shown21'5 

that (53) can be rewritten in the form 

Hk^-Hk=2SRZJ(0)-J(k)l, (54) 

where the renormalization factor R is given by the 
expression 

R=-
(S>)\ 

Here 

r <s') i 
1+ — £/(k'>?(k') 

L NSPJfP) v J 
/(k) = ;Ee t t ' « , 

s 

(55) 

(56) 

where 8 is summed over all z nearest neighbors and 
7(0) = zj is the k = 0 Fourier component of the exchange 
interaction. Therefore, all the simple spin waves are 
renormalized by the same renormalization factor inde
pendent of the k of the spin wave. This is the renormal
ization factor which can be obtained from the measure
ment of the difference in fields for resonance. I t is 
independent of the wave vector of the particular spin 
wave being measured and is dependent only on the 
temperature. 

Finally, we note that the above discussion is valid for 
a ferromagnet with a simple lattice. LeCraw and 
Walker's measurements were done on ferrimagnetic 
yttrium iron garnet. The detailed analysis of their data 
therefore must await the extension of the theory to this 
case. 
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